W miarę jak ciche obroty pojazdów elektrycznych stopniowo zastępują warkot i szkodliwe dymy silników spalinowych, zachodzą liczne zmiany. Charakterystyczny zapach stacji benzynowych zniknie na rzecz bezwonnych stacji ładowania, gdzie samochody mogą doładować swoje baterie. W międzyczasie generatory gazowe mogą zostać zmodernizowane, by pomieścić akumulatory, które pewnego dnia będą mogły zasilać całe miasta energią odnawialną – pisze Allison Hirschlag dla BBC Future.

Ta zelektryfikowana przyszłość jest znacznie bliżej niż mogłoby się wydawać. General Motors ogłosił na początku tego roku, że planuje zaprzestać sprzedaży pojazdów napędzanych gazem do 2035 roku. Celem Audi jest zaprzestanie ich produkcji do roku 2033, a wiele innych dużych firm samochodowych idzie w jego ślady. W rzeczywistości, według BloombergNEF, dwie trzecie światowej sprzedaży pojazdów osobowych będzie miało napęd elektryczny do 2040 roku. Systemy sieciowe na całym świecie szybko się rozwijają dzięki postępowi w technologii magazynowania energii w akumulatorach.

Reklama

Choć może się to wydawać idealnym rozwiązaniem, jest jeden duży problem. Obecnie baterie litowo-jonowe (Li-ion) są typowymi bateriami stosowanymi w pojazdach elektrycznych i mega-akumulatorach używanych do przechowywania energii ze źródeł odnawialnych, a baterie te są trudne do recyklingu.

Co z recyklingiem baterii litowo-jonowych?

Wraz z rosnącym popytem na pojazdy elektryczne, recykling baterii Li-ion stanie się wyzwaniem dla przemysłu akumulatorowego i motoryzacyjnego. Najpowszechniej stosowane metody recyklingu bardziej tradycyjnych akumulatorów (np. akumulatory kwasowo-ołowiowe) nie sprawdzają się w przypadku akumulatorów Li-ion. Te ostatnie są zazwyczaj większe, cięższe, dużo bardziej skomplikowane, a nawet niebezpieczne, jeśli zostaną źle rozebrane.

Zazwyczaj części akumulatorów są rozdrabniane na proszek, a następnie proszek ten jest topiony lub rozpuszczany w kwasie. Ale baterie litowo-jonowe składają się z wielu różnych części, które mogą eksplodować, jeśli nie zostaną ostrożnie rozmontowane. A nawet jeśli zostaną rozłożone, produkty nie są łatwe do ponownego wykorzystania.

Drogi proces, niska wartość produktów

„Obecna metoda polegająca na rozdrabnianiu wszystkiego i próbach oczyszczenia złożonej mieszaniny skutkuje drogimi procesami z produktami o niskiej wartości” – mówi Andrew Abbott, chemik fizyczny z Uniwersytetu w Leicester. W rezultacie recykling kosztuje więcej niż wydobycie litu w celu wyprodukowania nowych. Ponadto, ponieważ tanie sposoby recyklingu baterii litowych na dużą skalę są opóźnione, tylko około 5 proc. baterii litowych jest poddawanych recyklingowi na całym świecie – większość z nich po prostu się marnuje.

Wydobycie litu wcale nie takie eko

To nie jedyny powód, dlaczego te baterie stanowią obciążenie dla środowiska. Wydobycie różnych metali potrzebnych do produkcji baterii Li-ion wymaga ogromnych zasobów. Do wydobycia jednej tony litu potrzeba ponad 2 mln litrów wody. W Chile, na solnisku Salar de Atacama, wydobycie litu zostało powiązane z zanikiem roślinności, wyższymi temperaturami w ciągu dnia i rosnącymi warunkami suszy na obszarach rezerwatów narodowych. Choć pojazdy elektryczne mogą przyczynić się do zmniejszenia emisji dwutlenku węgla w całym okresie ich użytkowania, zasilające je akumulatory rozpoczynają swoje życie z dużym śladem ekologicznym.

Jeśli jednak miliony baterii Li-ion, które rozładują się po około 10 latach użytkowania, zostaną poddane bardziej efektywnemu recyklingowi, pomoże to zneutralizować cały ten wydatek. Kilka laboratoriów pracuje nad udoskonaleniem bardziej efektywnych metod recyklingu, tak aby w końcu standardowy, przyjazny dla środowiska sposób recyklingu baterii litowo-jonowych był gotowy do zaspokojenia gwałtownie rosnącego popytu. Nie możemy dłużej traktować akumulatorów jako jednorazowego użytku.

Jak utylizować baterie Li-ion?

Ogniwo baterii Li-ion ma metalową katodę, czyli dodatnią elektrodę, która zbiera elektrony podczas reakcji elektrochemicznej, wykonaną z litu i mieszanki pierwiastków, do których zazwyczaj należą kobalt, nikiel, mangan i żelazo. Posiada również anodę, czyli elektrodę, która uwalnia elektrony do obwodu zewnętrznego, wykonaną z grafitu, separator oraz pewnego rodzaju elektrolit, który jest medium transportującym elektrony pomiędzy katodą a anodą. Jony litu przemieszczające się od anody do katody tworzą prąd elektryczny. Metale w katodzie są najcenniejszymi częściami baterii i to na nich chemicy skupiają się podczas demontażu baterii Li-ion, aby je zachować i odnowić.

Usprawnienie recyklingu akumulatorów Li, a w konsekwencji umożliwienie ponownego wykorzystania ich części, przywróci wartość już dostępnym akumulatorom. Dlatego właśnie naukowcy popierają proces bezpośredniego recyklingu – może on dać drugie życie najcenniejszym częściom baterii. Mogłoby to w znacznym stopniu zrównoważyć energię, odpady i koszty związane z ich produkcją.

Jednak demontaż baterii Li-ion jest obecnie wykonywany głównie ręcznie w warunkach laboratoryjnych, co będzie musiało się zmienić, jeśli bezpośredni recykling ma konkurować z bardziej tradycyjnymi metodami recyklingu. „W przyszłości trzeba będzie wprowadzić więcej technologii do demontażu” – mówi Abbott. „Jeśli bateria jest montowana przy użyciu robotów, logiczne jest, że musi być demontowana w ten sam sposób” – dodaje. Zespół Abbotta z Faraday Institution w Wielkiej Brytanii prowadzi badania nad zrobotyzowanym demontażem baterii Li-ion w ramach projektu ReLib, który specjalizuje się w recyklingu i ponownym wykorzystaniu akumulatorów. Według badań zespołu, ultradźwiękowa metoda recyklingu może przetworzyć 100 razy więcej materiału w tym samym czasie niż bardziej tradycyjna metoda hydrometalurgii. Abbott twierdzi również, że można to zrobić za mniej niż połowę kosztów wytworzenia nowej baterii z pierwotnego materiału.

Baterie ulegające degradacji

Niektórzy naukowcy opowiadają się za odejściem od akumulatorów Li-ion na rzecz takich, które można produkować i rozkładać w sposób bardziej przyjazny dla środowiska. Jodie Lutkenhaus, profesor inżynierii chemicznej na Texas A&M University, pracuje nad akumulatorem wykonanym z substancji organicznych, które mogą ulegać degradacji na polecenie.

Argumentuje, że nawet gdy bateria Li-ion zostanie rozebrana, a jej części zostaną odnowione, nadal pozostaną pewne części, których nie da się uratować i staną się odpadem. Akumulator degradowalny, taki jak ten, nad którym pracuje zespół Lutkenhaus, mógłby być bardziej zrównoważonym źródłem energii.

Baterie organiczno-radiowe (ORB) istnieją od lat 2000 i funkcjonują dzięki materiałom organicznym, które są syntetyzowane w celu przechowywania i uwalniania elektronów. Zespół wykorzystuje kwas do rozkładu ORB na aminokwasy i inne produkty uboczne, jednak aby części uległy właściwemu rozkładowi, muszą panować odpowiednie warunki. „Odkryliśmy, że kwas w podwyższonej temperaturze działa” mówi Lutkenhause.

Przed degradowalną baterią stoi jednak wiele wyzwań. Materiały potrzebne do jej stworzenia są drogie, a ponadto nie jest ona jeszcze w stanie zapewnić takiej ilości energii, jaka jest wymagana w zastosowaniach o dużym zapotrzebowaniu, takich jak pojazdy elektryczne i sieci energetyczne.

Segregacja baterii

Baterie Li-ion są wykorzystywane do zasilania wielu różnych urządzeń, od laptopów, przez samochody, po sieci energetyczne, a ich skład chemiczny różni się w zależności od celu, czasami znacząco. Powinno to znaleźć odzwierciedlenie w sposobie ich recyklingu. Naukowcy twierdzą, że zakłady recyklingu baterii muszą oddzielnie segregować baterie litowo-jonowe, podobnie jak sortuje się różne rodzaje plastiku podczas recyklingu, aby proces ten był najbardziej efektywny.

Na rynek powoli, ale nieuchronnie wkraczają bardziej zrównoważone baterie. Producenci samochodów elektrycznych zaczęli również ponownie wykorzystywać swoje własne akumulatory na wiele różnych sposobów. Na przykład Nissan odnawia stare akumulatory do samochodów Leaf i umieszcza je w zautomatyzowanych pojazdach z napędem, które dostarczają części do jego fabryk.

Przyszłe wyzwania

Stale rosnące zapotrzebowanie rynku na pojazdy elektryczne sprawia, że firmy z całego przemysłu motoryzacyjnego wydają miliardy dolarów na zwiększenie trwałości akumulatorów Li-ion. Jednak Chiny są obecnie zdecydowanie największym producentem akumulatorów litowo-jonowych. Z kolei wykorzystanie technologii sztucznej inteligencji do odnawiania najbardziej użytecznych części mogłoby pomóc krajom o niewielkich dostawach komponentów do baterii Li-ion, aby nie musiały one tak bardzo polegać na Chinach.

Opracowanie nowych baterii, które mogłyby konkurować z bateriami Li, również prawdopodobnie wstrząśnie branżą poprzez stworzenie zdrowej konkurencji. Pojawienie się mniej skomplikowanego, bezpieczniejszego akumulatora, który jest tańszy w produkcji i łatwiejszy do oddzielenia po zakończeniu eksploatacji, stanowi ostateczną odpowiedź na obecny problem zrównoważonego rozwoju pojazdów elektrycznych. Jednak do czasu pojawienia się takiej baterii, standaryzacja recyklingu baterii Li-ion jest znaczącym krokiem we właściwym kierunku – podsumowuje BBC Future.