Artykuł na ten temat ukazał się w czasopiśmie „Angewandte Chemie International Edition” (http://dx.doi.org/10.1002/anie.202114198).

Wodór to najlżejszy ze wszystkich pierwiastków. Zwykle składa się z jednego dodatnio naładowanego protonu i jednego ujemnie naładowanego elektronu. Jednak istnieją też dwa cięższe izotopy tego pierwiastka: deuter oraz tryt. Jądro deuteru oprócz protonu zawiera jeden neutron, a w przypadku trytu są to dwa neutrony. Oba izotopy są bardzo rzadkie.

Reklama

Od kilku lat deuter jest przedmiotem intensywnych badań farmaceutycznych, ponieważ odkryto, że leki z jego dodatkiem rozkładane są 5, 10, a nawet 50 razy wolniej niż tradycyjne. „Nazywamy to kinetycznym efektem izotopowym” - wyjaśnia prof. Andreas Gansäuer z Instytutu Chemii Organicznej i Biochemii na Uniwersytecie w Bonn.

Jak wyjaśnia, dzieje się tak, ponieważ wiele reakcji, w tym degradacja substancji czynnych, nie zachodzi samoistnie. Najpierw potrzebują lekkiego „pchnięcia”; energii aktywacji. To trochę tak, jakby samochód toczył się wolno po lekkim wzniesieniu - stanie się tak tylko wtedy, kiedy najpierw ktoś nada mu wystarczający rozpęd. „Jeśli zastąpimy wodór deuterem, energia aktywacji nieco wzrośnie – mówi Gansäuer. - W rezultacie reakcje staną się wolniejsze. Dotyczy to również metabolizmu farmaceutyków w wątrobie”.

Oznacza to, że wprowadzenie do leków deuteru zamiast podstawowego izotopu wodoru powoduje ich dłuższe działanie. Można je zatem przyjmować w mniejszych dawkach lub rzadziej. Problem z tą metodą jest jednak taki, że deuter jest rzadki, a zatem stosunkowo drogi. „W związku z tym powinien być wprowadzany tylko w niektórych, ściśle określonych miejscach cząsteczki leku” - tłumaczy autor omawianej publikacji.

Jego zespół opracował innowacyjną technikę, która umożliwia takie modyfikacje. Opiera się ona na grupie związków zwanych epoksydami. Są to substancje mocno reaktywne. Zawierają w sobie trójczłonowy pierścień epoksydowy i - jak wyjaśnia Gansäuer - „magazynują energię niczym napięta sprężyna, którą można następnie wykorzystać do popchnięcia pewnych reakcji”.

„My wprowadziliśmy takie epoksydy do różnych testowanych cząsteczek, a następnie otworzyliśmy ich napięty pierścień za pomocą naszego katalizatora, który zawiera w sobie atom tytanu i związany z nim deuter” – opowiada prof. Gansäuer.

„Po rozcięciu pierścienia epoksydowego powstają dwa reaktywne końce. Katalizator wiąże się z jednym z nich, a następnie przenosi deuter na drugi wolny koniec. To pozwala nam wprowadzić atom deuteru w konkretnym, pojedynczym miejscu cząsteczki leku, w ściśle określonej i pożądanej orientacji przestrzennej” – dodaje.

Opracowana przez niemiecki zespół metoda została już wykorzystana m.in. do wytwarzania deuterowanych prekursorów środka przeciwbólowego ibuprofenu oraz przeciwdepresyjnej wenlafaksyny. Autorzy są przekonani, że w przyszłości będzie ona stosowana także w wielu innych farmaceutykach.