"Oddany do konsultacji plan Morawieckiego zakłada, że polska gospodarka będzie się intensywnie rozwijać w oparciu o nowe technologie. Jednym z zawartych tam tematów priorytetowych jest wdrożenie reaktorów wysokotemperaturowych (Hight Temperature Reactor, HTR) jako źródła ciepła i energii dla przemysłu" - mówi w rozmowie z PAP prof. Grzegorz Wrochna z Narodowego Centrum Badań Jądrowych.

Naukowiec jest szefem powołanego przez Ministra Energii zespołu doradczego. Zadaniem tej grupy jest analiza i przygotowanie warunków do wdrożenia wysokotemperaturowych reaktorów jądrowych. Prof. Wrochna jest również przewodniczącym europejskiej Inicjatywy Przemysłowej Kogeneracji Jądrowej (Nuclear Cogeneration Industrial Initiative – NC2I).

Reaktory HTR (czasem wymiennie nazywane HTGR - reaktory wysokotemperaturowe chłodzone gazem) dopiero czekają na swój moment. Na świecie wybudowano dopiero kilka takich urządzeń. "Ta technologia jest sprawdzona na poziomie komercyjnym, ale nie jest dostępna powszechnie" - opowiada fizyk. Według niego niezbędne jest wypracowanie rozwiązania, które będzie można powielać i które sprawdzi się w produkcji masowej. Badacz szacuje, że w Polsce jest zapotrzebowanie na co najmniej kilkanaście takich reaktorów - w Europie kilkaset, a na świecie - na kilka tysięcy.

Jednym z pierwszych kroków w stronę technologii HTR w Polsce może być budowa w Narodowym Centrum Badań Jądrowych w Świerku niewielkiego badawczego reaktora wysokotemperaturowego o mocy cieplnej 10 MW, wytwarzającego 4MW mocy elektrycznej. NCBJ podpisało w tej sprawie pod koniec maja br. list intencyjny z brytyjskim konsorcjum U-Battery.

Reklama

NCBJ będzie teraz zabiegać o pozyskanie środków na budowę reaktora z funduszy strukturalnych. Ostateczna decyzja o finansowaniu powinna zapaść do końca 2018 r. Reaktor powstałby wtedy do 2025 roku. Prof. Wrochna zaznacza, że przy budowie instalacji pracowałyby polskie firmy i polscy naukowcy. Poza tym przy reaktorze mogliby się szkolić polscy inżynierowie, którzy potem obsługiwaliby reaktory komercyjne.

"Mówiąc o energii, zwykle myślimy o energii elektrycznej. Jej wytwarzaniu mają służyć wielkie reaktory lekkowodne planowane w polskim programie energetyki jądrowej, bo one dają tu najlepsze wyniki ekonomiczne. Ale trzeba pamiętać, że bardzo dużo energii zużywamy do transportu, zaś trzecią częścią zużywanej przez nas energii jest ciepło" - mówi prof. Wrochna. Zaznacza, że chodzi nie tylko o ciepło do ogrzewania mieszkań, ale przede wszystkim o ciepło dla przemysłu - niezbędne do działania m.in. rafinerii, zakładów chemicznych czy potrzebne w produkcji papieru, stali czy cementu.

Dziś do produkcji ciepła używa się tam paliw kopalnych - gazu, ropy, węgla. Surowce te jednak - jak możemy się spodziewać - będą coraz droższe i coraz trudniej dostępne. Poza tym powodują emisję wielu szkodliwych substancji. "Dlatego coraz częściej myśli się tam o wykorzystaniu reaktorów jądrowych. One w wielu miejscach na świecie są używane do wytwarzania i energii elektrycznej, i cieplnej - np. do zasilania sieci ciepłowniczych czy odsalania wody morskiej. A w Polsce myślimy o ich wykorzystaniu w przemyśle chemicznym" - tłumaczy Wrochna.

Jak opowiada, w firmach chemicznych nośnikiem ciepła jest często para wodna o temperaturze rzędu 450-550 st. C. A taką temperaturę oferują właśnie reaktory wysokotemperaturowe. "W takim zakładzie wystarczyłoby wymienić istniejący kocioł - np. gazowy - na reaktor jądrowy. Nie trzeba byłoby w ogóle modyfikować instalacji chemicznej czy produkcyjnej w zakładzie. W dodatku reaktor można umieścić bezpośrednio przy zakładach przemysłowych. Dostarczałyby zarówno elektryczność, jak i ciepło" - opowiada prof. Wrochna.

Badacz z NCBJ tłumaczy, że ważną cechą reaktorów wysokotemperaturowych jest ich bezpieczeństwo. "Nawet jeśli wszystkie systemy bezpieczeństwa przestałyby działać, cały gaz - hel - odbierający ciepło uciekł, a obudowa reaktora by zniknęła - paliwo powinno samo się wychłodzić, nie uwalniając do środowiska żadnych substancji promieniotwórczych. Bezpieczeństwo zawarte jest bowiem w samej konstrukcji paliwa jądrowego" - opowiada rozmówca PAP.

Wyjaśnia, że uwalniający energię jądrową uran zamknięty jest tam wewnątrz wielowarstwowych ziaren. Koszulka otaczająca paliwo (składa się ona m.in. z węgla pirolitycznego i węglika krzemu) to materiał odporny na wysokie temperatury, który nie dopuści do wydostania się substancji promieniotwórczych na zewnątrz.

"Czasem o takich reaktorach mówi się z przymrużeniem oka +walk-away reactors+ - bo jeśli nastąpi awaria, to obsługa reaktora mogłaby nawet iść do domu - ani ludziom, ani środowisku nic nie zagrozi" - opowiada Wrochna. Tłumaczy, że to tylko żartobliwe ujęcie sytuacji, ale w pewnym stopniu oddaje, jak bezpieczna jest konstrukcja reaktora. Jak zaznacza, zaletą tego typu reaktorów - w odróżnieniu od innych - jest to, że nie wymaga się tworzenia wokół nich strefy bezpieczeństwa ani strefy ewakuacyjnej.

Z tych powodów technologią HTR interesuje się wiele krajów, z myślą o różnych zastosowaniach. Prof. Wrochna wymienia, że USA i Kanada potrzebują takich reaktorów do zasilania odległych osiedli i baz wojskowych. Wielka Brytania – według eksperta z NCBJ - rozważa HTR jako jedną z technologii małych i średnich reaktorów (tzw. SMR), w które chciałaby zainwestować, a dla Indonezji HTR mógłby być źródłem zasilania dla średniej wielkości wysp. Wrochna zaznacza, że z kolei Korea Południowa, Japonia czy Holandia koncentrują się, podobnie jak Polska, na przemyśle chemicznym. Myślą nawet o rozwinięciu technologii w kierunku wyższych temperatur, umożliwiających produkcję wodoru i paliw wodoropochodnych. A Chiny właśnie kończą budowę dwóch reaktorów HTR-PM o mocy elektrycznej 100 MW każdy.

Zdaniem prof. Wrochny wdrożenie tej technologii w Europie mogłoby ułatwić i przyspieszyć reindustrializację gospodarki. „Stabilne, opłacalne ekonomicznie źródło energii, pozwalające uniezależnić się od importu paliw to kluczowy element dla powodzenia takich przemian. Polska, rozpoczynając program wdrażania technologii HTR, może stać się +jądrem kondensacji+ wokół którego skrystalizuje się nowa gałąź przemysłu jądrowego w Europie. Budowa małego reaktora HTR w NCBJ to pierwszy krok w tym kierunku” – przekonuje prof. Wrochna.

Ludwika Tomala (PAP)